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Abstract. Finite temperature SU(2) lattice gauge theory is investigated in a three-dimensional cubic box
with fixed boundary conditions provided by a discretized, static Bogomol’nyi–Prasad–Sommerfield (BPS)
monopole solution with varying core scale µ. Using heating and cooling techniques, we establish that for
discrete µ-values stable classical solutions either of self-dual or of pure magnetic type exist inside the box.
Having switched on quantum fluctuations we compute the Polyakov line and other local operators. For
different µ and at varying temperatures near the deconfinement transition we study the influence of the
boundary condition on the vacuum inside the box. In contrast to the pure magnetic background field case,
for the self-dual one we observe confinement even for temperatures quite far above the critical one.

1 Introduction

Quark confinement is one of the most intriguing problems
in quantum chromodynamics (QCD). There are several
appealing analogies to SQCD and supergravity which are
helpful to guide our intuition. Nevertheless, a final expla-
nation of the mechanism in terms of structures of (non-
supersymmetric) QCD or pure Yang–Mills theory itself is
still missing. More precisely, it is confinement at weak cou-
pling, when the lattice spacing is well below the presum-
ably relevant structures accomplishing this mechanism,
that we need to explain. Therefore a closer investigation
of various semi-classical configurations in the context of
lattice simulations in different phases seems to be neces-
sary.

The first example of an extended excitation which is
looked for, nowadays massively, in Monte-Carlo-generated
gauge field configurations is the instanton [1]. It is not
completely clear at present to what extent their size (ac-
tually their distribution of sizes) is influenced by the de-
tection algorithm itself [2,3], but there is no doubt that
this scale can be and perhaps has been already decoupled
from the lattice spacing1.

In a recent publication, lattice measurements of the
field strength correlator at zero temperature have been
confronted with semi-analytical results of the semi-classi-

1 Perfect actions, however, are trying to go the opposite way
[4]. At the cost of a complicated but still practically feasible
action one wants to be able to keep the discretization scale near
to the dynamically important scale(s) whereas good continuum
features can be obtained within bigger volumes in affordable
computer time

cally motivated instanton liquid approximation [5]. The
correlation length and strength of the correlation at inter-
mediate distances can be explained within the standard
parameters characterizing the instanton liquid. However,
the change of the field strength correlators at the decon-
fining transition cannot be explained in a model based
exclusively on self-dual or anti-self-dual configurations [6].

According to current folklore, instantons are not re-
lated to confinement at all. If they are related, we have
still to identify the interactions and correlations in the in-
stanton liquid which would make the corresponding sam-
ple fields confining. Traditionally, in continuum models,
instantons are the relevant configurations to explain spon-
taneous chiral symmetry breaking and are needed to solve
the UA(1) problem [1]. Without the inclusion of (short-
range) instanton correlations one is not able to under-
stand the temperature dependence of the chiral conden-
sates and the restoration of chiral symmetry at Tch (for a
schematic model, see [7]). An indirect role for confinement
is attributed to instantons because of local correlations be-
tween monopoles and instantons [8].

Monopoles are the agents of another model that has
been first formulated in the continuum in order to explain
confinement: the dual superconductor scenario invented
by t’Hooft and Mandelstam [9]. It assumes condensation
of Abelian monopoles and views confinement as a dual
Meissner effect. That this scenario really takes place has
been demonstrated for Abelian compact and non-Abelian
lattice gauge theories by numerical simulations [10,11]. In
the latter case Abelian monopoles appear as singularities
of the gauge fixing procedure and are identified as point-
like conserved currents (DeGrand–Toussaint monopoles
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[12]) in various gauges after Abelian projection. These
monopoles have a quantized magnetic charge but no natu-
ral size which would be analogous to the instanton size and
could point to some confinement scale and corresponding
QCD coupling. In the very first attempt researchers tried
to prove that the density of the monopoles possesses a
continuum limit [13], but the density is strongly affected
by short-range lattice artefacts. There have been methods
developed to remove these artefacts (monopole blocking to
obtain an infrared effective action for thick monopoles [14],
renormalization group motivated smoothing of configura-
tions which reduces point-like Abelian monopole currents
[15]).

There is one model for an extended, particle-like
monopole which could be confronted with first-principle
lattice Monte Carlo configurations. This is the t’Hooft–
Polyakov (HP) [16] or – as the limiting case – the
Bogomol’nyi–Prasad–Sommerfield (BPS) monopole [17].
It is taken from the Georgi–Glashow model and re-inter-
preted as a static configuration in pure gauge theory iden-
tifying the adjoint Higgs field with the fourth component
of the vector potential. As a solution of the classical non-
Abelian field equations the BPS monopole satisfies the
self-duality condition and carries electric charge. This is
the reason why in pure gauge theory we sometimes also
call the BPS monopole solution a dyon2.

The present paper represents an attempt to examine
isolated configurations of this kind under the influence of
quantum fluctuations. A first investigation in this spirit
was reported by Smit and van der Sijs [19]. A particular
feature in our present work (as in [19]) is the possibility
to select the semi-classical background field by applying
specific boundary conditions fixing the tangential vector
potential at the surface of a spatial box. The main em-
phasis in the work of our precedessors was to select the
coupling (or length scale) at which these monopoles would
condense at zero physical temperature (and to determine
the mass of the quantum monopole) in the spirit of [20].
Here, in contrast, we want first to elaborate on the ques-
tion of which solutions of the lattice equations of motion
are compatible with the boundary conditions. Only if they
are invariably recovered from heating and cooling cycles
can we speak of unique background configurations. We will
discover that, although the boundary conditions are origi-
nally taken from a self-dual BPS configuration, depending
on discrete values of the size parameter µ−1, these solu-
tions can have either pure magnetic monopole or dyonic
(self-dual) character. For simplicity, let us call them in the
first case an HP monopole (because of the suppressed elec-
tric components) and in the second case a BPS monopole
or simply a dyon. Our main interest is to investigate for
the finite temperature case how usual indicators of the de-
confinement phase transition (average Polyakov line, dis-
tribution of Polyakov lines) are modified by the presence of
the different kinds of background fields. For this purpose
we have to consider these observables locally, sufficiently
far from the ‘cold walls’ of the box.

2 One should not confuse this dyon solution with the Julia–
Zee dyon in the Georgi–Glashow model [18]

Our main result will be that the self-dual BPS-like
(dyon) background fields – in contrast to the pure mag-
netic HP monopole ones – strongly support confinement.
We shall show that a dyon environment keeps the Yang–
Mills theory in the confinement state even for tempera-
tures T > Tc.

From the investigation of the field strength correlator
[5] it is known that self-dual semi-classical configurations
seem to be essential in the confinement phase but only
there. Investigations of Wilson loops in the classical dyon
background have shown that dyons give rise, at short dis-
tances, to a weak but confining quark–antiquark force of
harmonic oscillator-type (‘super-confinement’) [21]3. No-
tice that this is not the confining force at long distances de-
scribed by the string tension or the magnetic confinement
[24] for space-like Wilson loops at high temperature. With
respect to the latter, a dense gas of magnetic monopoles
at high temperatures could explain it.

The paper is organized as follows. In Sect. 2 we show
how to discretize a continuum BPS monopole (dyon) so-
lution and how the classical lattice configurations com-
patible with dyonic boundary conditions can be classified
interpolating between lattice HP monopoles and dyons. In
Sect. 3 we report on Monte Carlo simulations performed
with fixed open spatial boundary conditions correspond-
ing to HP monopole or dyon background fields at finite
temperature. We measure the profile of the action density
and Polyakov line inside the box and establish the exis-
tence or absence of confinement. Section 4 contains the
conclusions.

2 Classical solutions
with dyon boundary conditions

First let us discuss classical field configurations in a fi-
nite volume with fixed spatial boundary conditions. We
consider a hypercubic lattice of size N3

s × Nt with peri-
odic boundary conditions in the imaginary time direction
(finite temperature T = 1/(aNt)) and open boundary con-
ditions in the three-space. The latter will be specified such
that links being normal to the boundary and pointing out-
wards are inactive, i.e. cannot contribute to the action.
Link variables tangential to the boundaries will be fixed
to classical values given by a BPS dyon configuration as
defined in the following.

We discretize a single BPS dyon field as a static solu-
tion of the Euclidean Yang–Mills equations of motion. Let
its centre be fixed at x1 = x2 = x3 = (Ns + 1)/2. For the
lattice spacing a = 1 is assumed. On each time slice t ≡ x4
all active link variables Uν(~x, t) ∈ SU(2), ν = 1, . . . , 4, are
represented as follows:

Uk(~x, t) = exp
(−i

2
σjεjklxl

∫ 1

0
ds

1 − K(µr(s))
r2(s)

)

3 Similar observations have been made for the short-range
potential in the field of an instanton [22] and for more generic
self-dual fields [23]
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U4(~x, t) = exp
(−i

2
σjxj

H(µr)
r

)
, j, k, l = 1, 2, 3, (1)

with r(s) =
√

(xk + s)2 +
∑

j 6=k x2
j , r(0) = r. For the BPS

dyon solution we have explicitely

K(µr) =
µr

sinh(µr)

H(µr) = µr
cosh(µr)
sinh(µr)

− 1. (2)

µ denotes the inverse core size of the dyon to be fixed
by the lateron. The replacement µ → −µ transforms the
dyon into an anti-dyon. Note that in the limit r → ∞

1
r
H(µr) ∼ µ − 1

r
− O(exp(−µr)). (3)

For comparison, the asymptotic behaviour of an HP pure
monopole solution (which classically would be related to
a sufficiently strong non-vanishing Higgs potential and in
the quantum case of pure SU(2) gauge theory could be due
to a dynamical screening of the electric field components)
is determined by

1
r
H(µr) ∼ µ − O(exp(−µr)). (4)

It is immediately clear that at semi-asymptotic distances
one cannot distinguish between a classical BPS dyon and
an HP monopole if one replaces

µdyon − 1
r

→ µmonopole. (5)

As has been shown by Smit and van der Sijs [19] the dyon
or monopole fields at the boundary have some further in-
teresting properties. Additionally to the Abelian gauge
symmetry with respect to transformations

Ω(~x, t) = exp
(

iω
2

σjxj

)
(6)

(ω = const.) the boundary fields periodic in t exhibit a
combined symmetry with respect to the gauge transfor-
mation

Ω(~x, t) = exp
(

iπn
t

Nt
σjxj

)
(7)

and the shift

µ → µ +
2πn

Nt
, n = 1, 2, . . . . (8)

Both the shifts (5) and (8) can be combined and let us
expect a periodic behaviour in µ which allows us to create
boundary conditions compatible with a BPS dyon as well
as with an HP monopole. For the hypercubic lattice we
have no cylindrical symmetry at the boundary so we have
to replace r(~x) by an effective Reff , for which we adopt
the value Reff ' 1.13 · 1

2 (Ns − 1) as given in [19]. In what
follows we shall parametrize the boundary values by

µ′ =
(

µ − 1
Reff

)
Nt

2π
(9)

instead of µ.
In general, one cannot expect the lattice discretized

dyon to be a solution of the lattice equations of motion.
In order to find such a solution corresponding to the dyon
boundary conditions we keep the tangential boundary
links fixed at the classical values given by (1) and (2).
For varying µ or µ′, respectively, the other links inside the
box (for all time slices) are exposed to repeated cycles of
Monte Carlo heating followed by cooling. These links pos-
sess the form (1) and (2) only as start values. We wanted to
find out what lattice fields, respecting the boundary con-
ditions augmented by periodicity in time, have minimal
action. It turned out that there exist several local minima
of action for µ′ sufficiently large. The configurations with
lowest action show the interesting µ′-dependence antici-
pated above.

In order to characterize the lattice field configurations
obtained by cooling after heating the discretized BPS
dyon, we will use the full plaquette action

S = β
∑

x,µ<ν

(
1 − 1

2
TrUµ,ν(x)

)
= E2 + B2,

β ≡ 4/g2, (10)

with its magnetic part B2 coming from the sum of space–
space plaquette contributions and its electric part E2 ob-
tained as the sum of time-like plaquettes. Figure 1 shows
the full action per timeslice of the classical continuum BPS
dyon, lattice discretized according to (1) and (2), depend-
ing on the parameter µ′ (solid line). The action values are
given in units of 4π/(a g2). The lattice size is 123 × 4.
Obviously, for µ′ ' 2 the dyon core parameter becomes
sufficiently large such that this dyon completely fits into
the lattice box.

The data points in Fig. 1 show the global or local min-
ima, respectively, found for the full action (asterisks) after
cooling down the Monte Carlo heated configurations. Only
in the range 0 ≤ µ′ ≤ 0.5 (i.e. for a sufficiently smooth dis-
cretized original dyon field (1) and (2)) is the action prac-
tically reproduced. For larger µ′-values (less than 1.5) the
solutions of the lattice equations of motion deviate from
the original discretized dyon but are still unique in the
sense that they are restored after repeated heating and
cooling. These solutions exhibit the periodicity in µ′ as
discussed before. For µ′ ≥ 1.5 we have seen also other
branches of solutions with higher action than the lowest
possible one which are metastable under cooling.

In addition to the full action, the magnetic (open
squares) and electric contributions (full dots) to the ac-
tion are shown separately. The most interesting for us are
the states reached at half-integer and integer µ′ respec-
tively. For µ′ ' 0.5, 1.5, . . . we reproduce a BPS dyon state
identical to the original one at µ′ = 0.5 with equal elec-
tric and magnetic contributions to the action. For µ′ '
1.0, 2.0, . . . only the magnetic part of the action survives.
That means that we have obtained purely magnetic, HP-
like monopoles.

We convinced ourselves that we have obtained static
solutions with localized action and topological charge (the
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Fig. 1. Total action, magnetic and electric part
of the action for possible classical solutions of the
lattice field equations with dyon boundary condi-
tions as explained in the text
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Fig. 2. Action density profile of the classical
solution of the lattice equations of motion for
µ′ = 1.0 (pure magnetic monopole) as a func-
tion of y = 1, . . . , 16 and z = 1, . . . , 16

latter for the BPS dyon only). As an example we show the
action density profile for the case µ′ = 1.0 being a pure
HP-monopole (see Fig. 2).

In order to see what seems to be important in the
boundary fields for the classes of lattice solutions we have
found and for the classification below of the quantum fields
on these background fields, we compute the Polyakov line.
Figure 3 shows the Polyakov line averaged over spatial
points ~x on the boundary, where the fields are kept at
classical (discretized) BPS dyon values, as a function of
µ′. We see the periodicity in µ′ again. For integer values
µ′, where inside the box HP monopoles are supported as
classical solutions, we have 〈L〉 ' ±1. In contast, for half-
integer µ′ providing BPS dyon solutions 〈L〉 ' 0. (Small

deviations of the positions of the minima from 0 and ±1
are due to an incomplete optimization of the Reff -value on
Ns in the definition of µ′.)

3 Quantum fields with dyon boundary
conditions

In the following we want to investigate quantum fields
with fixed spatial boundary conditions as given by the
ansatz (1) and (2). We call the latter simply the dyon
boundary conditions, but we should keep in mind that
these boundary conditions for appropriate values of µ′ are
compatible to classical BPS dyon or HP monopole solu-
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Fig. 3. Polyakov line operator computed for the classical BPS
configuration at the boundary of the 3D box for varying pa-
rameter µ′

tions of the lattice equations of motion. We emphasize that
these solutions are stable. This provides the opportunity
to study a real semi-classical situation with a unique back-
ground field parametrized by µ′.

All our present work refers to SU(2) pure gauge theory
on a thermal (non-symmetric) lattice as a function of β
and µ′. The simulations have been done with a standard
Monte Carlo Metropolis algorithm. For comparison, we
have also done simulations at the same β values on the
same lattices with periodic boundary conditions. For the
simulations, the lattice size was 163×4. Remember that for
Nt = 4 the deconfinement phase transition occurs at β =
βc ' 2.29 [25]. In the following we will mainly consider two
typical cases: β = 2.2, characteristic for the confinement
phase, and β = 2.4, for the deconfinement phase.

In order to estimate the range of influence of the dyon
boundary condition on the quantum fields, we computed
different local observables for various µ′ as a function
of the (minimal) distance d from the lattice site to the
boundary. Figures 4 and 5 show the plaquette contribu-
tions to the magnetic and electric part of the action aver-
aged over all plaquettes with a given distance d. The situ-
ation for both typical β-values looks quite similar. Inside
the box we obtain plateau values. The range of the plateau
seems to define a core size of ‘normal’ quantum fluctua-
tions. We shall investigate the properties of the quantum
fields inside the core in detail. There at least, no difference
is seen between magnetic and electric contributions to the
action.
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Fig. 4. Magnetic and electric contributions to the full action
from plaquettes at distance d from the boundary in the dyon
(µ′ = 0.5) and in the pure monopole case (µ′ = 1.0) for β = 2.2
(confinement)
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Fig. 5. As in Fig. 4, but for β = 2.4 (deconfinement)
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Fig. 6. Average Polyakov line operator for β = 2.2 (confine-
ment phase) computed for different boundary conditions at all
lattice sites with distance to the boundary d. For comparison
we show the result obtained with periodic boundary conditions
(dotted lines) too
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Fig. 7. As in Fig. 6, but for β = 2.4 (deconfinement phase).
The results obtained with periodic boundary conditions were
split into the two Z(2)-asymmetric values (dotted lines)
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Fig. 8. Distribution of local Polyakov line values for various
boundary conditions (dyon case for µ′ = 0.5, pure magnetic
monopole case µ′ = 0.0, 1.0). The Polyakov line operator has
been computed at all sites at distance d = 5 from the boundary.
For comparison we show also the case of periodic boundary
conditions obtained at the same β = 2.2

We have computed the average Polyakov line as a func-
tion of d, too. This quantity is able to tell us more about
the influence of the type of boundary condition on the
quantum fields in the interior of the box. The results are
plotted in Figs. 6 and 7, respectively. Even inside the core
established before (roughly at d ≥ 3) the behaviour of
the Polyakov line strongly depends on the boundary con-
ditions compatible either with a BPS dyon or with HP
monopole background fields. For integer µ′ (HP monopole)
in both the confinement and the deconfinement phase the
results are compatible with that obtained for periodic
boundary conditions at the same β. That means that the
interior of the lattice is in the phase corresponding to the
β value. For β = 2.2, in the presence of monopole bound-
ary conditions, the small deviation (in the centre of the
lattice) from the expected zero is only due to the maxi-
mal violation of the Z(2) invariance right on the spatial
boundary (compare with Fig. 3).

For β = 2.4 (Fig. 7) we show the average Polyakov line
for periodic boundary conditions in a symmetrized way. In
fact, during our relatively short simulation runs of typi-
cally O(1000) configurations with 50 empty sweeps we did
not observe any tunnelling between the Z(2)-symmetric
states. In the presence of monopole boundary conditions,
going deeper into the lattice the locally averaged Polyakov
line approaches the two Z(2)-symmetric values. In con-
trast, for half-integer µ′ (BPS dyon) the average Polyakov
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Fig. 9. The same as in Fig. 8, but for β = 2.4. All runs were
taken with comparable statistics (O(500) configurations). In
the periodic boundary case, this statistics was not enough to
observe any tunnelling between the Z(2) states. Therefore, the
distribution appears to be asymmetric confined to only one of
the Z(2) orientations

line remains zero throughout the whole lattice when pass-
ing the deconfinement transition. At β = 2.4 inside the
core we clearly get |〈L〉| < 0.1. These observations are sup-
ported by the corresponding histograms of local Polyakov
line values measured at distance d = 5 from the bound-
ary which are shown in Figs. 8 and 9 for β = 2.2 and 2.4
respectively.

In the confinement phase, the histograms correspond-
ing to the monopole boundary conditions are displaced
representing entirely the effect of the finite correlation
length of the Polyakov line, while the histogram for the
dyonic boundary conditions coincides with the ‘normal’
one (for periodic boundary conditions). In the deconfine-
ment phase, the normal histogram (without tunnelling as
in our case) is reproduced with monopole boundary con-
ditions at distance d = 5, while the histogram for dyonic
boundary conditions is almost symmetric, similar to the
lower β-value. We conclude that, while the HP monopole
boundary conditions are compatible also with the confine-
ment phase, a BPS dyon background inside the finite box
keeps the system in the confinement state even for tem-
peratures above Tc. However, as we have seen for smaller
Nt or larger β, this does not persist at arbitrarily high
temperature. We checked this for Nt = 2, β = 2.4 (com-
pare Fig. 10) and Nt = 4, β = 2.7. In both cases of
boundary conditions we have obtained Polyakov averages
inside the corresponding core regions that are compatible
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Fig. 10. As for Fig. 7, but for higher temperature Nt = 2

with the case of periodic boundaries, i.e. deconfinement
states. Therefore, at higher temperatures deconfinement
is restored inside the box in spite of the dyon boundary
condition.

4 Conclusions

We have investigated pure SU(2) lattice gauge theory at
finite temperatures. We have imposed fixed spatial bound-
ary conditions defined by a discretized static Bogomol’nyi–
Prasad–Sommerfield monopole or dyon solution of the
continuum Yang–Mills field equations. By minimizing the
lattice action we have found stable field configurations
which solve the lattice equations of motion. As already re-
ported by Smit and van der Sijs [19] these configurations
can be self-dual BPS-like dyon or pure magnetic HP-like
monopole solutions. They occur periodically in terms of
the core size of the original dyon as fixed at the spatial
boundary.

As far as these configurations are really stable, i.e. re-
peated cycles of Monte Carlo heating and subsequent cool-
ing always provide the same result, we are in a position
to simulate the quantum theory in well-defined classical
background fields.

We have used this environment to find out how dyon-
like or purely magnetic, monopole-like background fields
influence the finite-temperature quantum fields. Our main
observation was that in the dyon case the fields inside the
box are kept in the confinement state even for higher tem-
peratures, which in the standard case of periodic bound-
ary conditions cause deconfinement. The Polyakov line as
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the main order parameter for the deconfinement transi-
tion turned out to be zero remarkably stable inside the
whole three-dimensional volume considered. However, a
further increase of the temperature finally restored the
deconfinement inside the box. The phenomenon reported
here might be called delay of confinement evaporation due
to dyon boundary conditions.

We would like to interpret our findings such that the
confinement phenomenon is more strongly related to self-
dual semi-classical objects like BPS dyons than to a pure
magnetic HP monopole background. On the other hand,
deconfinement, when described semi-classically, requires
background fields which are not (anti-) self-dual. The final
loss of confinement above β = 2.7 means breakdown of
the semi-classical approximation. This supports the view
developed in recent papers, where the correlation between
instantons and monopoles has been investigated in detail
on the lattice (see [8]). The idea that dyons might provide
confinement within a semi-classical framework has been
put forward also within the continuum approach [21].

Our results were obtained for quite small lattice sizes.
We are going to check them deeper in the continuum limit
and for physically larger box volumes.
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